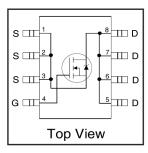
International Rectifier

IRF7473

HEXFET® Power MOSFET

Applications

- Telecom and Data-Com 24 and 48V input DC-DC converters
- Motor Control
- Uninterrutible Power Supply


Benefits

- Ultra Low On-Resistance
- High Speed Switching
- Low Gate Drive Current Due to Improved Gate Charge Characteristic
- Improved Avalanche Ruggedness and Dynamic dv/dt
- Fully Characterized Avalanche Voltage and Current

Typical SMPS Topologies

- Full and Half Bridge 48V input Circuit
- Forward 24V input Circuit

$\begin{array}{c|cccc} V_{DSS} & R_{DS(on)} \ max & I_D \\ \hline 100V & 26m\Omega@V_{GS} = 10V & 6.9A \end{array}$

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	6.9	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	5.5	A
I _{DM}	Pulsed Drain Current ①	55	
P _D @T _A = 25°C	Power Dissipation	2.5	W
	Linear Derating Factor	0.02	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
dv/dt	Peak Diode Recovery dv/dt ®	5.8	V/ns
TJ	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ heta JL}$	Junction-to-Drain Lead		20	
$R_{\theta JA}$	Junction-to-Ambient 4		50	°C/W

IRF7473

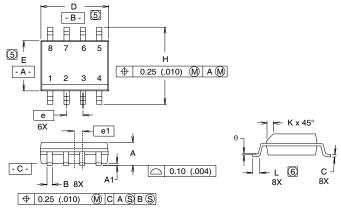
Static @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.11	_	V/°C	Reference to 25°C, I _D = 1mA ③
R _{DS(on)}	Static Drain-to-Source On-Resistance		22	26	mΩ	$V_{GS} = 10V, I_D = 4.1A$ ③
V _{GS(th)}	Gate Threshold Voltage	3.5	_	5.5	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
I _{DSS}	Drain-to-Source Leakage Current			1.0	μA	$V_{DS} = 95V, V_{GS} = 0V$
				250	μ/	$V_{DS} = 80V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100	'''^	V _{GS} = -20V

Dynamic @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
g _{fs}	Forward Transconductance	10			S	$V_{DS} = 50V, I_D = 4.1A$
Qg	Total Gate Charge		61			I _D = 4.1A
Q _{gs}	Gate-to-Source Charge		21	_	nC	$V_{DS} = 50V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		19			$V_{GS} = 10V$,
t _{d(on)}	Turn-On Delay Time		24			$V_{DD} = 50V$
t _r	Rise Time		20	_	ns	$I_D = 4.1A$
t _{d(off)}	Turn-Off Delay Time		29	_		$R_G = 6.0\Omega$
t _f	Fall Time		11	_		V _{GS} = 10V ③
C _{iss}	Input Capacitance		3180			$V_{GS} = 0V$
Coss	Output Capacitance		230			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		120		pF	f = 1.0MHz
Coss	Output Capacitance		830			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
Coss	Output Capacitance		150			$V_{GS} = 0V, V_{DS} = 80V, f = 1.0MHz$
Coss eff.	Effective Output Capacitance		230			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 80V $

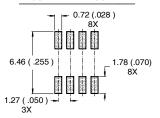
Avalanche Characteristics


	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy②	_	140	mJ
I _{AR}	Avalanche Current①		4.1	Α

Diode Characteristics

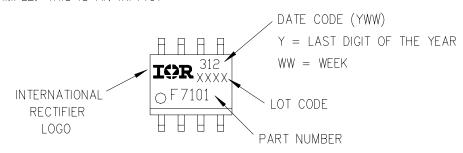
	Parameter	Min.	Тур.	Max.	Units	Conditions							
Is	Continuous Source Current			2.3		MOSFET symbol							
	(Body Diode)		_	2.3	A	showing the							
I _{SM}	Pulsed Source Current											^	integral reverse
	(Body Diode) ① — — 55	55	p-n junction diode.										
V_{SD}	Diode Forward Voltage	I —	_	1.3	V	$T_J = 25^{\circ}C$, $I_S = 4.1A$, $V_{GS} = 0V$ 3							
t _{rr}	Reverse Recovery Time	_	55		ns	$T_J = 25^{\circ}C, I_F = 4.1A$							
Q _{rr}	Reverse RecoveryCharge		140	_	nC	di/dt = 100A/µs ③							

SO-8 Package Details

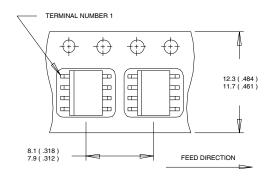


NOTES:

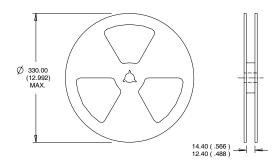
- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- [5] DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS MOLD PROTRUSIONS NOT TO EXCEED 0.25 (.006).
- (6) DIMENSIONS IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE...


DIM	INC	HES	MILLIMETERS		
	MIN	MAX	MIN	MAX	
Α	.0532	.0688	1.35	1.75	
A1	.0040	.0098	0.10	0.25	
В	.014	.018	0.36	0.46	
С	.0075	.0098	0.19	0.25	
D	.189	.196	4.80	4.98	
Е	.150	.157	3.81	3.99	
е	.050 I	BASIC	1.27 BASIC		
e1	.025 I	BASIC	0.635	BASIC	
Н	.2284	.2440	5.80	6.20	
K	.011	.019	0.28	0.48	
L	0.16	.050	0.41	1.27	
θ	0°	8°	0°	8°	

RECOMMENDED FOOTPRINT


SO-8 Part Marking

EXAMPLE: THIS IS AN IRF7101


IRF7473 International IOR Rectifier

SO-8 Tape and Reel

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

- NOTES:
 1. CONTROLLING DIMENSION: MILLIMETER.
 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 16mH $R_G=25\Omega,\ I_{AS}=4.1A.$
- 3 Pulse width \leq 400 μ s; duty cycle \leq 2%.
- ④ When mounted on 1 inch square copper board
- $\ \, \mathbb{S} \,\,\, C_{oss}$ eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}
- $T_J \le 150^{\circ}C$

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market.

